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Reynolds- (1976) described an order-analyais procedure for extracting
‘unidimensional chains of items (or persona) from multidimensional datasets.
It is an exhaustive method, using one of Cliff's consistency indices to
extract all possible chains which maintain a given level of consistency.
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calculationa needed for chain extraction can become very high,
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" This pnpcr oucl nes & proqedura which uses ;rnph choowy to extract
nonxedundant chains efficiently, .rather than nahauncivnly geherating all

chaina, as with Reynold's procedure. It also uses chain aonsistency as

R oriterion for chain membership. The dominance matrix can ba
reconsidexed as a labelled digraph. From this digraph, all uubaroupu
with parfect consistency are generated, and these in turn are used as
starting pointe in the chain extraction procass. The original dominance
digraph is then reduced until the chain is found from each subgraph,
This graph-theoretic algorithm may be carried out using a iariau of macrix
unnipulu:ionl performed on the dominance matrix, ) H
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Reynolds (1976) described an:orfder-analysls procadure for °°
. A ' N Cy

"

', . : . - + ) . ) “'!v
extracting unldlmenslonal.chalns of ltems (or personsd from multi-

o

dlmensional datasets, It Is an qxhaustIVe method uslng one :of ¢

-
,\‘

Cliff's conslistency lndlces to &tract all posslble cha“ns Whlch .
', 4. “ v
‘malntalin:a glven level of conslstency., A practlcal problém wlth this

method is trat the number of computer calculatlons n
v T

textraction can become very hlgh. , o J-‘q

&
lth Reynold's procedure. lt also uses chaln conslstenc
W ' Y

,'u t.,‘(

' orl erlom for Qiggn membershlp The domlﬂanceamatrlx can be

LN Jﬁ. 3. s

‘)'reconsldered.as a Iabel*%d dlgraph.;~From thls dlgraph all subgroupsj?

n » .
,‘wlthvpprfect conélstency are generated, and these ln turn are ased as .

1 )

3 \

This graph- dﬁeoretic algorithm may be carrled oqtﬁﬁs&ng a serles of

v-,\.. . an .
;matrix manlpulatlons performed on the domlnance matrix , V.

a

w
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EXTRACTING UNIDIMENS |ONAL CHAINS FROM MULT IDIMENS IONAL,
‘ DATASETS: A GRAPH THEPRV APPROACH

: Yonea Yamamoto & Staven NISG‘

,' : INTRODYCT | ON
. ~

Many psychometrlclans have Investigateéd the problem of extractlan

of factors or dimenslons from a data matrix, Ordarlng théory (Alraslan

and Barc, 1972) Is one. sugh mgthdd. Ordar analysis (Krus, Bart, &

Alrasian, 1975) was davaloped to examine the loglc-based dimenslons In

'blnary data matrlcﬁa. It makes usé of the domlnance relations (Coombs, ..

. 1964) In data to determine slmple orders.

Cllff (|977) developed several order conslstancy Indices from the

/dom!nance relation. He shows his Indices to be comparable to ¢lassical
/ ¥ -

measuraes of Internal consistency such as the Kuder-Richardson formula and

Loevinger's index of homogenelty.'

Raynolds (1976) developqq an order analysls procedure which uses
one of CI{ff's conslstency lndlces to recover all possible chalns (i.e. ,'

“all poss ble dlmenslons that maintain a glven level of conslstency) A

" practica]l problem with this method Is that the number of’ computer

. -
calculatlons needed for chain'extraction can easily become very high

. . * r
This article is concerned with presenting an efficient algorithm
s o I ) i

. ' o . :
to extract all possible chains using a general consistency Index. Our

_extraction procedure Is ai \nterécfive method using the PLATO computer

system at thé'UnIveréth o#wlLllﬁbis;'~Th§ main algorithm uses graph

theory, to extract nonredundant chains efficiently, rather than

The' authors wish to acknowledgg the contributlon of Robert Baillie,
who erte computer programs for the routines developed in this paper.




exhaustivaly generating all chalns as with Raynulds! (1976) procedure,
v | '
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P
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ORDER ANALYS|S

The m;thndsvdeﬁcribad 'ﬂ?thli papar ara based on tha connuutu’nf
order analys|s (Krus, Bart, &‘Alrdslan? 1975; Krué. 1975).  Qne
advuntqaa of unlnu ordqr analyala Is that it is maru-aaslly restated
In tarms of graph theory concnﬂts than ara other multivarilate pfﬂhﬁdﬂlna
such as‘fuctar analysls nnd.cluster analysls, In the followlng section,
‘we wlll explain the notatjon to’bu usadhlg éescrlblng tﬁp“ e%tractlon
algorithm, , ' | 'v:

Simple Orders

Mathematlcally. slmple orders aye ﬁeflnod as follows. Lot_R‘:
denote a simple order relation begﬁien eluments'of'a.set A. The
following three properties hold for all elements a, b.ﬁqudc of set A:
1) Asympetry property | . \\

| aRb Imphies bRa, where R mqens "not R,
2) Transitivity propert* |

aRb and bRc implles aRc.
3) Cennectedness property
- elther aRb or bRa.
: ™~

én example of simple order is shown by the concept ''less than'', Let
A be the set {1,2, 3, 4}. Then the set R of all ordered pairs of
elements from A which maintaln the felatIOn "iess than" is given.by

Ry = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}.

Directed Gtaphs

P

Graph theory Is a useful tool for helping one to better

understand compllcated sets of relatlonshlps (partlcularly logical

~

e
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ralationships), We will shuw that graphs can alau be uasful o

[l

daveloplng alguci thina, * we wil Uae divsated yrapha to ektiact elanenta

4

ftwn aats “hi h walataln the propere|as af slmpla ordars, .
Lot us donate a divacted graph G by G = (V,E), whare V is the aat

“of varticas and E the aset of adyas (arderad palvs of vartigas). Fu

ekxample, we let V' be the set A deacyiibed gailfer,
\

Ty ,

u, *N(V‘.E') |
W= A= 11,2,0,4)

o= Ryo= 06L,2), 00, 8), (0,0), (2,9), (2,0) . (3, 0) )

ﬁ' can bg reprasented graphlcally, as shown In Flgure I,

4

Figure 1. _Graph for G'

f ’

Notice that the three properties of simple orders (asymmetry, transi-
‘ .

-

tivity, and_connectedness) are shown graphically.

Matrix Representatlon of Directed Graphs

‘In order to represent a dlrected graph ‘G In a computer, one commonly

uses a V x V adjacency matrix (D
whether or not a dlrected edge‘exlsts between vertices 1 and j In V. The

matr ix representatlon for G, I's shown In Flgure 2.



Fo Vv 1)
: 0 0t 1| 2 .
G' -,
. 0 0 0 | §
a0 0 0 h
ol iy

o Flgura 2. Matein Representation af dl

L f A
TN\ : )

tn ;é&tlng. one ls typlcally dealing with a pﬂfﬁbha*by*ltwnu

date matrix, Fiyure 3 shows a (5 x h) datg matrix, S,

Ttems .
ah ¢ d
. R I I I I
2 0 1 1 1 '
a /
Parsons 3. 0O 0 1 1 - s
4 0 0 0 1
5 |00 0 o0 b
=N -t

-

Figure 3. A Persons by ltems Data Matrix

The element s'J of_S Is equal to 1 if person i gets lteﬁ J correét,

and 0 otherwise. 1In order analysis terms, it is sald that when s,, = 1,

ij

= 0, item ’
. 2 i

_ person | dominates Item j (Krus, 1975). Conversely, when s
J 1s sald to dominate person I. The dathmatrfx S Is reprasenfatlve of

a perfect Guttman scale. When the items are ord~- ﬂn o of dlfflculty,

each person will get each item correct Qp to a gliven diffic.ity level,
i B : A
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aid e fEmha coriect tharealimr. 10 detusl teating, tuwevdi, peifect

v

GubTman aveles are rarsly fugid,
Domingnve Matyives '

tiv urder analyala, one attanpias (0 Jataymlne 3aés af lama (s

ayulvalantly, pavauna) that ashiblt the p{uuuottua uf almple uidaia,
ta Flad thess arders, wie conatiucia a duminaice mati s Fiam (he ¢ aw
data watvin., Fallowlng CUITE (197%) a suparmateia A, conttalning 5 amd

' (the traqnaposed complemant of %) as lia segmenta, Is Jefloed. lhe

elemants of % and §' cantaln InTormatlon regarding the dominances hetween

the satas ufpersons and ftema. The lack of §ilcial ?:jpndncn Intarmat fan

about elenants within each set ta denated by faro matiicas In the super -

.

mateln A, which Is known as an adjacency matsix.

L]
Howaver, we are ultimataly concearned preclsaly with the dominance

. .

relations between e’ement& within sets, If wa multiply A by ltself, we

obtain the matrix Al, which contains the within-set dominance information.

?

.
The submatrix N Is the ltem domlnance matrix. Element nlj of N is

equal to the number of persons for which Item Iﬁdauina&}d item j {that is,

Y

Item | was incorrect - and Item ] was correct). Corr¢sp¢ndlngly, the

submatrix X of A2 Is the person dominance matrix. Eiement xsg equals

the number of Items for which person s dominated person t (that lsT ]

gpe number of items which person s got correct and t got incorrect),

[

Q . : .' ’ -1.1
ERIC - |

Aruitoxt provided by Eic:
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ERIC

Aruitoxt provided by Eic:

Ab Chila milab, She afdes il pals whauild cGhcaiioats wit e iitig o
K arid sstidict ohalina (Quﬁqq(;j Y S TP T polauiia whloh waliifli fhe

vriper Llas uf  lwple aidera i a aufficleng deygroee uf gpgras huat e

!
The wumbsr uf Chalne vaeded (i arcuniit Fur all ulf (he alaweints i (ha

ani la fﬂkd&p!!Qﬁd an the dbmanalunal ity wf (A8 aat (Aiua, 1975

i
H

GRAPHEC REPREXENTATIGN OF DOMINANCE INFORMAT ) UN

* .

Hia ascilon vutlines ihe graphi. reprasantat lun ol asvera!l
ardar-analysls cuncepls deswfied In 1he previoia asactfon, fabeliel
directed yrapha will he dsed (i o later 3ec U ho 0 develogp an sebrant fan

alygsy § thwn,

Lo AT i

Ferson Dominence Relagiy

\Racall the blnary, ltems by pavsons Jata mateda % from the last

sactlion, in Flgure ha the arvow Fram | to | denctes that perasun |

dominatas lttem | (a‘i - 1}, rlgurd‘kh shows ( hat item | thgnatas

persan | ("l - 0). ‘ )
o
. g
* J

Ttem | v ' [tem | ‘
. o *

person | ) ' person | O

4.
LN Figure ha Flgur

Person | Dominates ftem | ltem j 06%% ates Person i : \ad

ttem‘ltqm Dominance Ralatlons

/

Consider a person X responding to two Ttems, a

nd b. Since

-

person X can get each. Item elther right or wrong, there are four possible



. ) : i
.  Cegar. A - N 3 3 . - -
’ gi:ﬂ o o &, 7 '
response patterns.
ktem” ) ~
- a b
S T o °
) -Ajk ] ]
”. > -
: ; L]
) h
§ 1 -0
o o ] )
- N : R R s
T 00 s L L

Only the (i,b)'andl(o,l) response patterns contaln order. information, as
shown by the graphs In Flgdre 5. Paths of length 2 are found only for
these fwo response pétterné. ( A path of length‘2 means a succession

qf two - arrows, bne starting at the other's endpolnt.)

(1,1) x.q

(0,0) X o0
Mﬁk j' o

Figure 5, Posslble Two Item.Response

N, - Patterns and thelr Graphs ' ' -/
A4 _ . _ ) :

o

For an entire persons-by-items data matrlx‘S,'the I tem=-person

,Homlnances_are easily represented using a bipartfte gfabh. A bipartite

graph depicts the relations between the elements of one set-and the

i3




elements of another set. Figure 6 shows a data matrix, its adjacency

matrix, and its corresponding blpartite graph.

A B C
1o 1 1]
21 0 1 \ »
S =
3]0 1 0 T
b]o o 1
-,A
. .ABC 12 3 4
Ao o 0.1 01 17
: . Blo o oo 1 0.1 -
ool s .
A = = cloooi0o 0 1 0
s 0 i T
1{o1 10000
2|1 o 1l0 0 00
1
3/0 1 0,0 00 0
1 .
-, 5o o 1,0 0 0 o0
/ o - n
1 S
2
Person Item
: b
3 !
4.

» Flgure 6, A Data Matrix with its Adjacency
ﬂ Matrix and gipartite Graph

\ . . *
N 14
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The Item dominance matrix for the détéfmatrlx in Figure 6'can alsd;;
be shown by use of a labelled gréph.; Figures 7a and 7b show this
dominance matrix and.lts graph.. An elgment hlj represents the nymber
of ij domlnances. An element,nji repfesents'the numﬁen/of ji dominances,
and can also be thqught'qf as the number of‘jj c?unterdominances. ln, é#J;

'the graph, the numerals in p;rentheses are re1ated to these dominances :
andbcpuntgrdominances as follows;‘ The,second_nhmber {; the nuﬁsef of
! v

number Is the sum of the dominances and counterdominances.

~

dominances in the direction of the.referche& arrow, and thefirit

A B C
A o 2 2 t :
- (3,2) .
N= B 1 0 2
o c o1 o]." '
‘Figure 7a. Item Dominance . Fjgure 7b. Labelled Graph
Matrix for Data Matrix In - for Item Dominance Matrix v
Figure 6. _ : . L -\
/ ‘
(
.
S s




CONSISTENCY INDEX - ‘ R

We define a general consistency index, C, as : o IR
. T <&
€ =a(u /) -8,

i

.hhere V =X njk " (the total number of item dominances) :
Jk N T
U =L B (the number of domlnances abeve‘the main djagonal)
a J k>J Jk . Y . . R4

a and B are parameters_whlcﬁ determine the scale end orlgin,

reépectively, of C. ' o .
N , P

For a glven data matrix, the total number of dominances (U) Is
_ _ ‘ . -y

fixed,,whllexué Is depehdent on the order of the items. When the'items

&

are ordered in terms of dlfflculty, U_tIs maﬁémlzed a

a
when a =2 and:g =1, C is equivalent to the lndex used by
Rey olds In -his exhaus:\Ve~meihod This Is also equivalent to c 1’
kone of Cllff's conslstency lndices (Cllff 1977),’since ’ .-
20_ 2u -u U, = (U-U))  U-u, v

cg‘;,'—'.,' = - = =—-—c—- -

v u v Ttl R

where Ub = 5 I (ghe number of dominances below the main diagona?)

J k>] Jk T
A
) s

m = § fj (njk " ™

X

v = njk.

x

L
Jl
Tt Is also easy to show that with a = 4 and 8 =3, C becomes

. ct2’ another index proposed by C}Iff.




&

- H .
. - W AN -

'Althouéht the»above equation for 'C lnvolves two parameters,

aand B, It ls seen that B8 Is a functlon of a by conslderlng a dataset

'whlch fonns a- Guttman slmplex so that U = U and C = 1. Thus, S

e a(l) B, or B = a_- 1. Hence : .

T =\a(Ua/U)‘-‘(a‘- 1)~'_ S

'-Therefore, ue have only one parameter a, and lts value is determined

7so that CALIII be approxlmately equal “to- zero for a dominance matrlx

baseé on a random set of data With approprlaté choices of a, C can

/ e k ) v N 3 "
apprd74mate Cliff s Ct3, cth’ or C t5°
| ’I/ // ‘. | '/’ ‘U l . e \l:“%“ . : , ) L ,
o ‘ a5 W r s A ~
0/ Let C' =_‘U_a_=C_:B? . i/Then s ¢ _ o : o
4 . ' \ ' - AR ‘
! h ' z'n o I I 'n, v
4 0 k k
/ C! = ._a.. = U” a M = j k>.j j ;{i' '(<>J j
. U, + L.z +% £ n, I I n, st n
/ o 2P ey kT g TR f g WIS
Iz d;, _ co )
- i kgj;';k CL e ‘&
C J k<] (cik j;y ~
| : a- :
’ .1-‘ . . ’ ‘ | . l. . - B S

‘ : . - s - .
‘where_ djk Is. the number of dominancg; from j to k.
ik is the nﬁmber of\ counterdominances from j to ke (=nk:i)~.

Or we can say

- . .o ‘ \ . . N . . .
D oDodp o IIodg | ’. K
'k -~ o Lk)
I I d I T a .
Lk J Jj M y
.‘where.ajk = cjk + djk’ : . .ﬁ




Krus (1975) showed that domlnancé matrlces can be spllt Into
addltlve matrtce; aécorq&niito I'tem or person subsets, From this,

letting each perdon be' treated as a subset, ‘we‘have

a7/
n n N _ - n.n " N ..1’)
DI . DoIxodp
Ct - J k) I =17 Jk Tik aed ko) Jm1 Al
«z z,'z-(s',s +s!..s,) I I T a,.
j k<j '_1 ki ld . ii lk% j k<j 1=1 jk” i
N \\'\/ N . ' .
n 4
Iz z dj("() I ,,d("?
&al j k>j - =1
. n n ' N - .
R K z I 2 aj(ll() S a(') . \ ‘
=1 J k<j . ‘ I=1 . \: . C

This general consistency index,aq, has the advantage of

I

and C . Each

' 5%‘

addltlvlty bver the above-mentloned fﬂdites C,2» C. ;5
. t3 tll t5

item or person canﬁ be thought of as having an Individual C value. When
‘groups of jtems or persons are combined both the numerator and ' T\\

‘.

o denomlnator of the u /U ‘term: of - C change by an addltive amount. This fis

R4

| ‘not the casesfor Ct3, cth’ or ct5’ which are further Influenced by’
~“chance” cons.istency In a non-additfive fashion.

-'in the next“%ectlon"he utlflze this’additlve property to extract

!

: all possible . unidlmensional chains in a more efficlent fashion.z .
, !




EXTRACTION PROCEDURE | | 4

<:
Our extraction procedure is an interactive method uslng the PLATO

¢

'computer system at the University of I11inois. . The main algorithm uses

graph theory toiextgfct nonredundant chalns efflclentlx‘Qrather than

-

- exhaustively generating all chains, as wi Reynolds' (1976) procedure.

,
-

‘It uses the consistency index C as a Crlterlonhfor chaln membership,

1 \

taklng into account the fact that the numerator and denomlnator both
o
4

mglntaln addltlvltY\ynder addltlon and\deletlon of elements in a chain.

The dominance matrix can be Interpreted as a labelled dlgraph
From this grapkr, all subgroups with perfect conslstency are generated

and these In turn are used as, startlng points in chain. extractlon. Givén

a crlterlon consistency value C o? the orlglnal domlnance dlgraph ls then

1

reduced untll a chaln is found from each subgraph After extractlng all .

-

posslble‘chalns, redundant chalns'can_be ellmlnated and CO can be,changed
t§ select moreyor fewer‘chalna, as deslred.b ifﬁé,, - vv ’i. .
As a backdrop, we first briefly review Reynofas' (l97§)'method,
whlch extracts all posslble chalns which gatlsf} the condltlon that
criterion C (whlch is equlvalent to Cllff's consistency lndex C 1) ‘

exceed some cutoff value., Hls approach ls an lteratlve method generatlng

-

"all chains startlng at each ltem.

-

For each ltem, k, % consisﬁency value C +k Is calculated for

combining the new ltem wlth items' already in the chain. The item

.whlch.produifs the smallest decrement In cp+k Is added to the chain,

a

E

: produclng*Cé : o ' o ‘ . , a‘

vy 3

C'’ = madC
P k

~

p+k ’ . . ¢ . " : N
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This proeﬁfs of addlng the "'most conslstennﬁ ltem ls repeatéd using
the remalnlng i tems untll the overall chaln conslstency drops below H
the crlterlon conslstency value. At thls point the procedure stops

_ ¥ ‘ 4
and the chaln is comp]ete. This method ls reapplled using each ftem

Dﬁbl cate chalns are deleted, leavlng a unlque set of @halns that are

\\Ceynolds' procedure tolerates a lot of redundancy ln order to

;ensure that all chalns are extracted. ' That s, forueach item in a:
7 . ‘\\

glven chaln, uslng It as a startlng point will frequently result in

the re- productlon of an already exlsting chaln.'§~

«.The ‘total number of possible consistency calculations for a

"~ k=item data matrix}can be'computed. Starting at each item there are‘f

L

” (k=1) + (k=2) + ... + ()k‘k-‘]) - ‘k(|2<"|) : f
) - - ] . i} L. . Sy

L 9.

Nl

o

calculations. Summed across starting polnts (items), we have a’ total of
)

K ox K=l K2 (krl) N

v

2 - 2 o " ; .

calculations, whlcn,ls{of.the ordgsr of‘k3,

7

As k increases the number
of calculathns needed goes up«ﬁapfd1yr For instance, for a 20-item "’
data matrix, as many as 3800 calculatlons.may be needed Many of..

these calculatlons are unnecessary.

. % %
[ .
0ur algorlthm, on the other hand beglns by determlnlng all

' subsets of ltems wlth perfect conslstency (C=l 0), that is, subsets




. -
~

where_o denotes_any;chaln of Iteos with C = 1. (A chain consisting
of only one'ltem i's permissible.) ‘Note that there will 1ikely be
more than one starting ftem ch%ln: At,this.poiht, items are added
one:by‘one to a glven chain in such a way'that Its-conslstency stays
as-high as posslble.. yhen fts~Valde drops to some predeterminedicdg

we stop addlng further items to thils chain, bdt select agother-chain

]

and repeat the procedure . . .
We have consldered thiee dlfferent strategles for deciding. on
: . o
the successlve\ltems to add to a chaIn:w o .

> .

(1) Take each .one of the remaiﬁlng items in turn,- calculate the

new consistency index when each s added to ~the chain, vand select that".

" item which ylelds the largest c value This is essentially thevsame

N

as Reynolds (1976) .procedure, and ft Is time consumlng;because i‘
repetitious calculations have to be done for each item in-turn.
:&f(2) Without taklng the chaln as a whole Into consideration,

- look at the Mindividyal" consjstency lndex ' S o
. . N d % . . . , ~‘ .
S ' ' 7 )
L - £ R

: of each remalnlng item, and choose the Item wlth the largest CI d

' to addto the chaln. (Note, however, that each time an Item_ls added
_ )

to a chain, theﬂlndlvldual consistency index for each of the remaining

lteqs has to be calculated ahew.)!

N
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(3) Out of the remalning items, take the three with the highest
lndlvldual consistency values, and add each one of ‘these, In turn, to
the chaln. Choose the one that. produces the smallest decrease In the
overall»chaln consisteney to actuajli’add to the chajn. (This
method ls‘to‘allow for the posslbllity -~ which we have not experienced
so‘far == that the Ttem with the hlohest individual consistency, |
se]ected hy method (2), may not necessarily produce ‘the smallest
decrease in the chaln consistency.) |

Our computer algorithm can use any of the threéﬁstrategles JUSt
described; moreover, even when method (l) Is used, we have made
arrangements to keep the repetltlous calculations at a mnhlmum, We
shall now descr}be our algorithm in detail, giving ah example Using

the second strategy.

Chain Extracé%on Algorithm . N
1. Start with a persone x items data matrix. ‘ 7 _—\?/
1.1 Compute the dominance matrix. ’
. ~ N = [nlj R k’j = l,z,...,m . ,;‘ > .',. N
f Y 3 T ,
i \ i“ T .
Note that thls matrix is not a blnary matrlx and that nll = Q.
' Reorder the dominance matrlx ln terms of item dlfflcultles -
o
1.2 Copstruct a matrix 0 sych that each element in its -lower
) v i .
triangle is equal to the sum of the corresponding elgment of N
w ) .
plus the sy?petrlc etement 6f N. The upper triangle elements are

équal to the corpespondlng element of N and the maln diagonal

o
elementsareall zero,: Thg; ls,

\
)
&




n I <
- . IJ ) j
where o = 0 b= . L
v UTIMU TR B S

2. " Graph Initialization : IR

2.1 Construct a labelled graph from matrix 0.

e

—

G = (V,E) ‘
V= {1;2,...15'} (the total set of ltems)
E={(7,])) I=] 2,...,m, j=l+l l+2,...'m }oo
2,2 Initialize labels for yertlce; and edgeé:
ey = (a}l, &ij) = (ojl,o .)  for. =1 2,...,m, =i+, 0 2,3f.,m
vi= o] = [0,0]  for 1= 12,0.5,m
The graph labels refer to the consistencies both between vertices
and ithin! vertlces As the algorithm proceeds, sohe of the
vertlces wlll be merged to form new vertices. Each v"will refer to
‘ the. conslstency of the set of ftems within vertex .. Hence, each
P Is equal to the'sum of the elements ln the lower triangle of 0
thét correspond to’the doﬁlnances between elements contelned in
vertex. I. Likewise, 9; ls"equal to theksum o; the corresponding
elements ofuthe‘upper trlang]e of 0. Thds, each vy Is tnitialized
~at [o,0] . R ’. ' o S
2.3 lnltlallze a chain matrlx‘(CH)
ThlL wlll start out as an m.x m binary matrix that will contaln

- the. ltem chains, All elements of CH will be lnltiallzed at zero .

'except for the maln dlagonal elements, which are equal to one. When
. 't)r) '




the algorithm is finished, Chij will equal one If ltem J iIs a:
member of chain 1; otherwise, ll*wlll be equal to zero. Also,
redundant chalins will ‘be eliminated during the extraction process,

so that the final number of chalns (rows) In CH will be less than m.

»

3. Extraction of maximal chain with a consistency greater than a

criterion, C! .
o

i
|

3.1 ‘For a given chain L, merge the vertices and.edges tncluded. in

the chain, For vertices | and j (i<]j) where ChLi=] and chuj=0,

- merge vertices | and j to form vertex i+j with edges
- ‘x
(kyi:J) ° k<1 . T
. for all k € v-{i,j}.’
(1+J,k) I <k ,

The new labels In the graph are:
Viep ™ Dy rep g ap ey rdyl
'ek,lfj . ( alk—+ ajk’ dki + dkj ) k < 1| |
. e';j’k = ( ag* e d'k + dkj Y} . 1T < k< jpfor all ke V={1,j}.
€lj,k. " (a,+ 3 d * djk) k > j

3.2 Loot for the candidate vertex (item) which should be merged next.

'Ftnd the item with the largest ”lndlvldual"'conslétency (strategy 2)

[ek le ]2 - K<
o, in TN

. C' =
& [elcl klz ® k> 1 )
: [el'j',k]] | oo
e ® v

! Y
wherelféa’SII and [ka’s]z are the first and second comzonents of
e and i*] represents .items already in the chain.
14 P

/

Y
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@
3.3 Compute the new consistency (C') with the best .tandidate |tem,

k, added to the chain, -

c . —Q|.i~+ d|.j,k k<
IR T A

or

+ A
L 15 TN 13 R
Pk P gk

* ]

3:4 tf C' > Cé then add vertex k to the chain and merge the graph.

Réturn to step 3.2 .

If C' <!, the algorithm Is finished.
. oo |

.,n -

=
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AN [LLUSTRATIVE EXAMPLE

L]

We will now Illustrate the use of our algorithm using the example
’ -
glven in Reynolds (1976, p. 24). The consistency Index he used Is
equfvalept to our general consistency index with parameters o = 2 and

B=1.

1.~ Data Matrix
1.1 The ordered item dominance matrlx'f%r the six Items Is: ..

F 'ﬂ‘"glc A B

F fo N4 5]
- . -~
o 1 143
' N =St xs =" gfo 34
. e o 20 2
' Alog 2 1 3 0 3

F D EC A B

FIoo3 2 4 4 5
Db 0 2 1 4 3
0 = EJ2 4 o 3 4

~J
o
w

A A4 o6 b

#
2, Graph Initialization .

2,3, 2,2 The labelled graph corresponding to matrix O Is shown below,

tn Figure 8,

256
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Figure 8. Labelled graph of matrix’ 0.

S
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2.3 Initlalize the chaln matrix (CH). | o
| F D E

. " aT1 o0

| 0

CH =

oy W W N
O © ©o o o
o
o
-t

3, Extraction of Perfect Item Chains (C = 1,0) .

3.1, 3.2 Select verticea with perfect conaiatency (C -1, 0) for :

_each chain, and Qelete redundant chains. . - o
‘F DECAB S 'FDECAB
11010007 .« 1t 010 0 0]
2]0 1 010 1] reduce 20 1010 1
Ci= 31!1 0100 0 CH= 5|1 0.0 0 1 0O
41001 0 1 0 1 61 0 0 0 0 1]
N I : )
- 5f1.0 0 0 1 0
A%
61 0 0 0 0 1 .

- - ‘. o A

-

Repeat step 3. for a lower criterfon consistency.

L, Extracttonof Maximal Chain greater.thah a Criterion Consistency (Co=.8).
¥ . . .

4.1 Merge vertices and edggs included In the chaln.

. We.get Figure 9. Note that chain 1 is being processed.
\/,’ ER . . .

-




(10,9) ‘ .

(8,3)

Flgure 9. Merging of Vertices fof‘Chalh 1

b,2 Determlne the next candldate Item. -
| Of these 5/8 7/10, 7/8, and 9/10, the value 9/10 Is the Iargest.‘

Therefore the vertex B ls the candidate. ’ .

h 3 Compute C (a =2, B = 1) for the chaln with the candldate added.
. C = 2(2+9)/(2+10) - I - ‘853{ o

h.h- If‘C : co_then add eandldafe 1tem fo chain, merge the greph and
return to step 3.2. |If C‘€ Coo de not add'candﬂdate 1tem an& chain
Is complete. C- (=. 8333) > C, (=.8) so we add the candldate, merge

the graph and get CH matrix and Figure IO.




2h

—
o
=~
o o >
—

"CH . =

2 0
5 |1 o o0 1 o
6 0

LAl

Figure 10. Merging of Vertéx F, Eand B

We repeat the b.2 through 4.4. This time vertex A becomes the

: éandldate because 10/13 Is the largest value, bdt the new

C = 2(11+10)/(12+13)-1 = ,68 < C(=.8), so the algorithm then stops.
Repeating the prdcess'fdr'the'othef,chalns, we get the final chain;

matrix (C = .8).

F.D E C B 5161

A
1 1 o1 00 17 - .8333
ch= 2 [1 1 01 0 1| .800

51101 01 0 8000

3C
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The value In tho upper rlght hand corner (.5161) Is the C value for
a chnln contulnlng all of thq Items, Note that each lndlvldua)

chaln repreaents an lmprovemant over .5161.
Tho Interactlva procedure to extract chalns Is summarlzed In
Figure 11, . Each hlock consists of one or more routines whtth are
3

lmplemented,on the PLATO system at the Unlversity of 1llinois.

I
¢

31
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TYPE 1s
"IN CHAIN
MATRIX

o )
r\“' ‘.;u. ! ‘:
oENERATE |* ’
\ scomes | . ¢
v | soRy 3 :
. DATA-
S
{ - l ’ T j. D \
COMPUTE ‘ COMPUTE
CREN .ﬁv §xs
CONSTRUCT L
O MATRIX & o
\ CHAIN MATRIXES !
. L ﬂ.
I} r— 1 ¢
' , - SEE CHAIN -
CALCULATE LOOK FOR .
.c ‘A" CHAIN ~ MATRIX 8
: . L b C'- .
L | I T -
P X ! >
%
END i
:5 3 '.P 3
¢ C
. y ‘: ’l:a
Flgure 11, Extracting procedure on, PLATO system. ‘. &, e
v ‘ ' ’ B ‘o - ‘.k'. :g‘
. P . ’; v R
S A
- '~'l ‘e . s
s ; L
2323 ? {i;



~ DISCUSEION

We Introduced a general coﬁilstqnqy !nduﬁ’]n thlsuﬁnpdr iuch‘that.°
with parameters vaiuol o -Ké uﬁd Bwl), It s ddulvnlont to the Index K
which Reynolds (1976) used lﬁ\hlu article, and also to one of ClIff's
Indlices, °:i (1977) .. Nlthcq = 4 and 8 = 3 It becomes ng. another Index
by Cliff.  With appropriate cholca of o {and a = a=1) we can , y
approxlmate others of ClIff's Indlces. £3° c ch? and (:':5

One lmportan; feature of the general conslistency Index Is that.
.&ddltiylty holds In botqbnymera¥or.and denominator. It enables us
to use a graphlcal merging technlque. As a result we can glve an

4

efflclent algorlthm to get all possible chalns. which were obtalned
by Reynolds by hls exhaustlve method, ”: , Y

" In the current paper we have plcked up fhg I tems Invbrder ;q.get"‘
Item chalns. Buf we can easlly extend the»teéhnlque descflbed here to
" a method that both plicks up Items and el imlnates persons In order to .
get highl cdnsistgggmltem chalns, bécause addlthlty Ip numerator and
denomlinator holds for persons as well as Items, ‘In soﬁe'cases a |
few persons "contaminafe" our data, therefore ellmlﬁatlon of these
persons |s a good way to get .good item chalns. ‘Our efficlent élgorlahm
_ensures the extracting of ghalns for a large number of Items and

persons. We cén also abply the same technique to get conslstent.

persdn chalns,fby plcklng up or eliminating items or persons.
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